1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package bytes implements functions for the manipulation of byte slices.
6// It is analogous to the facilities of the strings package.
7package bytes
8
9import (
10 "internal/bytealg"
11 "unicode"
12 "unicode/utf8"
13)
14
15// Equal reports whether a and b
16// are the same length and contain the same bytes.
17// A nil argument is equivalent to an empty slice.
18func Equal(a, b []byte) bool {
19 // Neither cmd/compile nor gccgo allocates for these string conversions.
20 return string(a) == string(b)
21}
22
23// Compare returns an integer comparing two byte slices lexicographically.
24// The result will be 0 if a == b, -1 if a < b, and +1 if a > b.
25// A nil argument is equivalent to an empty slice.
26func Compare(a, b []byte) int {
27 return bytealg.Compare(a, b)
28}
29
30// explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes),
31// up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes.
32func explode(s []byte, n int) [][]byte {
33 if n <= 0 || n > len(s) {
34 n = len(s)
35 }
36 a := make([][]byte, n)
37 var size int
38 na := 0
39 for len(s) > 0 {
40 if na+1 >= n {
41 a[na] = s
42 na++
43 break
44 }
45 _, size = utf8.DecodeRune(s)
46 a[na] = s[0:size:size]
47 s = s[size:]
48 na++
49 }
50 return a[0:na]
51}
52
53// Count counts the number of non-overlapping instances of sep in s.
54// If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s.
55func Count(s, sep []byte) int {
56 // special case
57 if len(sep) == 0 {
58 return utf8.RuneCount(s) + 1
59 }
60 if len(sep) == 1 {
61 return bytealg.Count(s, sep[0])
62 }
63 n := 0
64 for {
65 i := Index(s, sep)
66 if i == -1 {
67 return n
68 }
69 n++
70 s = s[i+len(sep):]
71 }
72}
73
74// Contains reports whether subslice is within b.
75func Contains(b, subslice []byte) bool {
76 return Index(b, subslice) != -1
77}
78
79// ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b.
80func ContainsAny(b []byte, chars string) bool {
81 return IndexAny(b, chars) >= 0
82}
83
84// ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b.
85func ContainsRune(b []byte, r rune) bool {
86 return IndexRune(b, r) >= 0
87}
88
89// IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b.
90func IndexByte(b []byte, c byte) int {
91 return bytealg.IndexByte(b, c)
92}
93
94func indexBytePortable(s []byte, c byte) int {
95 for i, b := range s {
96 if b == c {
97 return i
98 }
99 }
100 return -1
101}
102
103// LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s.
104func LastIndex(s, sep []byte) int {
105 n := len(sep)
106 switch {
107 case n == 0:
108 return len(s)
109 case n == 1:
110 return LastIndexByte(s, sep[0])
111 case n == len(s):
112 if Equal(s, sep) {
113 return 0
114 }
115 return -1
116 case n > len(s):
117 return -1
118 }
119 // Rabin-Karp search from the end of the string
120 hashss, pow := bytealg.HashStrRevBytes(sep)
121 last := len(s) - n
122 var h uint32
123 for i := len(s) - 1; i >= last; i-- {
124 h = h*bytealg.PrimeRK + uint32(s[i])
125 }
126 if h == hashss && Equal(s[last:], sep) {
127 return last
128 }
129 for i := last - 1; i >= 0; i-- {
130 h *= bytealg.PrimeRK
131 h += uint32(s[i])
132 h -= pow * uint32(s[i+n])
133 if h == hashss && Equal(s[i:i+n], sep) {
134 return i
135 }
136 }
137 return -1
138}
139
140// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
141func LastIndexByte(s []byte, c byte) int {
142 for i := len(s) - 1; i >= 0; i-- {
143 if s[i] == c {
144 return i
145 }
146 }
147 return -1
148}
149
150// IndexRune interprets s as a sequence of UTF-8-encoded code points.
151// It returns the byte index of the first occurrence in s of the given rune.
152// It returns -1 if rune is not present in s.
153// If r is utf8.RuneError, it returns the first instance of any
154// invalid UTF-8 byte sequence.
155func IndexRune(s []byte, r rune) int {
156 switch {
157 case 0 <= r && r < utf8.RuneSelf:
158 return IndexByte(s, byte(r))
159 case r == utf8.RuneError:
160 for i := 0; i < len(s); {
161 r1, n := utf8.DecodeRune(s[i:])
162 if r1 == utf8.RuneError {
163 return i
164 }
165 i += n
166 }
167 return -1
168 case !utf8.ValidRune(r):
169 return -1
170 default:
171 var b [utf8.UTFMax]byte
172 n := utf8.EncodeRune(b[:], r)
173 return Index(s, b[:n])
174 }
175}
176
177// IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points.
178// It returns the byte index of the first occurrence in s of any of the Unicode
179// code points in chars. It returns -1 if chars is empty or if there is no code
180// point in common.
181func IndexAny(s []byte, chars string) int {
182 if chars == "" {
183 // Avoid scanning all of s.
184 return -1
185 }
186 if len(s) == 1 {
187 r := rune(s[0])
188 if r >= utf8.RuneSelf {
189 // search utf8.RuneError.
190 for _, r = range chars {
191 if r == utf8.RuneError {
192 return 0
193 }
194 }
195 return -1
196 }
197 if bytealg.IndexByteString(chars, s[0]) >= 0 {
198 return 0
199 }
200 return -1
201 }
202 if len(chars) == 1 {
203 r := rune(chars[0])
204 if r >= utf8.RuneSelf {
205 r = utf8.RuneError
206 }
207 return IndexRune(s, r)
208 }
209 if len(s) > 8 {
210 if as, isASCII := makeASCIISet(chars); isASCII {
211 for i, c := range s {
212 if as.contains(c) {
213 return i
214 }
215 }
216 return -1
217 }
218 }
219 var width int
220 for i := 0; i < len(s); i += width {
221 r := rune(s[i])
222 if r < utf8.RuneSelf {
223 if bytealg.IndexByteString(chars, s[i]) >= 0 {
224 return i
225 }
226 width = 1
227 continue
228 }
229 r, width = utf8.DecodeRune(s[i:])
230 if r != utf8.RuneError {
231 // r is 2 to 4 bytes
232 if len(chars) == width {
233 if chars == string(r) {
234 return i
235 }
236 continue
237 }
238 // Use bytealg.IndexString for performance if available.
239 if bytealg.MaxLen >= width {
240 if bytealg.IndexString(chars, string(r)) >= 0 {
241 return i
242 }
243 continue
244 }
245 }
246 for _, ch := range chars {
247 if r == ch {
248 return i
249 }
250 }
251 }
252 return -1
253}
254
255// LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code
256// points. It returns the byte index of the last occurrence in s of any of
257// the Unicode code points in chars. It returns -1 if chars is empty or if
258// there is no code point in common.
259func LastIndexAny(s []byte, chars string) int {
260 if chars == "" {
261 // Avoid scanning all of s.
262 return -1
263 }
264 if len(s) > 8 {
265 if as, isASCII := makeASCIISet(chars); isASCII {
266 for i := len(s) - 1; i >= 0; i-- {
267 if as.contains(s[i]) {
268 return i
269 }
270 }
271 return -1
272 }
273 }
274 if len(s) == 1 {
275 r := rune(s[0])
276 if r >= utf8.RuneSelf {
277 for _, r = range chars {
278 if r == utf8.RuneError {
279 return 0
280 }
281 }
282 return -1
283 }
284 if bytealg.IndexByteString(chars, s[0]) >= 0 {
285 return 0
286 }
287 return -1
288 }
289 if len(chars) == 1 {
290 cr := rune(chars[0])
291 if cr >= utf8.RuneSelf {
292 cr = utf8.RuneError
293 }
294 for i := len(s); i > 0; {
295 r, size := utf8.DecodeLastRune(s[:i])
296 i -= size
297 if r == cr {
298 return i
299 }
300 }
301 return -1
302 }
303 for i := len(s); i > 0; {
304 r := rune(s[i-1])
305 if r < utf8.RuneSelf {
306 if bytealg.IndexByteString(chars, s[i-1]) >= 0 {
307 return i - 1
308 }
309 i--
310 continue
311 }
312 r, size := utf8.DecodeLastRune(s[:i])
313 i -= size
314 if r != utf8.RuneError {
315 // r is 2 to 4 bytes
316 if len(chars) == size {
317 if chars == string(r) {
318 return i
319 }
320 continue
321 }
322 // Use bytealg.IndexString for performance if available.
323 if bytealg.MaxLen >= size {
324 if bytealg.IndexString(chars, string(r)) >= 0 {
325 return i
326 }
327 continue
328 }
329 }
330 for _, ch := range chars {
331 if r == ch {
332 return i
333 }
334 }
335 }
336 return -1
337}
338
339// Generic split: splits after each instance of sep,
340// including sepSave bytes of sep in the subslices.
341func genSplit(s, sep []byte, sepSave, n int) [][]byte {
342 if n == 0 {
343 return nil
344 }
345 if len(sep) == 0 {
346 return explode(s, n)
347 }
348 if n < 0 {
349 n = Count(s, sep) + 1
350 }
351 if n > len(s)+1 {
352 n = len(s) + 1
353 }
354
355 a := make([][]byte, n)
356 n--
357 i := 0
358 for i < n {
359 m := Index(s, sep)
360 if m < 0 {
361 break
362 }
363 a[i] = s[: m+sepSave : m+sepSave]
364 s = s[m+len(sep):]
365 i++
366 }
367 a[i] = s
368 return a[:i+1]
369}
370
371// SplitN slices s into subslices separated by sep and returns a slice of
372// the subslices between those separators.
373// If sep is empty, SplitN splits after each UTF-8 sequence.
374// The count determines the number of subslices to return:
375//
376// n > 0: at most n subslices; the last subslice will be the unsplit remainder.
377// n == 0: the result is nil (zero subslices)
378// n < 0: all subslices
379//
380// To split around the first instance of a separator, see Cut.
381func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) }
382
383// SplitAfterN slices s into subslices after each instance of sep and
384// returns a slice of those subslices.
385// If sep is empty, SplitAfterN splits after each UTF-8 sequence.
386// The count determines the number of subslices to return:
387//
388// n > 0: at most n subslices; the last subslice will be the unsplit remainder.
389// n == 0: the result is nil (zero subslices)
390// n < 0: all subslices
391func SplitAfterN(s, sep []byte, n int) [][]byte {
392 return genSplit(s, sep, len(sep), n)
393}
394
395// Split slices s into all subslices separated by sep and returns a slice of
396// the subslices between those separators.
397// If sep is empty, Split splits after each UTF-8 sequence.
398// It is equivalent to SplitN with a count of -1.
399//
400// To split around the first instance of a separator, see Cut.
401func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) }
402
403// SplitAfter slices s into all subslices after each instance of sep and
404// returns a slice of those subslices.
405// If sep is empty, SplitAfter splits after each UTF-8 sequence.
406// It is equivalent to SplitAfterN with a count of -1.
407func SplitAfter(s, sep []byte) [][]byte {
408 return genSplit(s, sep, len(sep), -1)
409}
410
411var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
412
413// Fields interprets s as a sequence of UTF-8-encoded code points.
414// It splits the slice s around each instance of one or more consecutive white space
415// characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an
416// empty slice if s contains only white space.
417func Fields(s []byte) [][]byte {
418 // First count the fields.
419 // This is an exact count if s is ASCII, otherwise it is an approximation.
420 n := 0
421 wasSpace := 1
422 // setBits is used to track which bits are set in the bytes of s.
423 setBits := uint8(0)
424 for i := 0; i < len(s); i++ {
425 r := s[i]
426 setBits |= r
427 isSpace := int(asciiSpace[r])
428 n += wasSpace & ^isSpace
429 wasSpace = isSpace
430 }
431
432 if setBits >= utf8.RuneSelf {
433 // Some runes in the input slice are not ASCII.
434 return FieldsFunc(s, unicode.IsSpace)
435 }
436
437 // ASCII fast path
438 a := make([][]byte, n)
439 na := 0
440 fieldStart := 0
441 i := 0
442 // Skip spaces in the front of the input.
443 for i < len(s) && asciiSpace[s[i]] != 0 {
444 i++
445 }
446 fieldStart = i
447 for i < len(s) {
448 if asciiSpace[s[i]] == 0 {
449 i++
450 continue
451 }
452 a[na] = s[fieldStart:i:i]
453 na++
454 i++
455 // Skip spaces in between fields.
456 for i < len(s) && asciiSpace[s[i]] != 0 {
457 i++
458 }
459 fieldStart = i
460 }
461 if fieldStart < len(s) { // Last field might end at EOF.
462 a[na] = s[fieldStart:len(s):len(s)]
463 }
464 return a
465}
466
467// FieldsFunc interprets s as a sequence of UTF-8-encoded code points.
468// It splits the slice s at each run of code points c satisfying f(c) and
469// returns a slice of subslices of s. If all code points in s satisfy f(c), or
470// len(s) == 0, an empty slice is returned.
471//
472// FieldsFunc makes no guarantees about the order in which it calls f(c)
473// and assumes that f always returns the same value for a given c.
474func FieldsFunc(s []byte, f func(rune) bool) [][]byte {
475 // A span is used to record a slice of s of the form s[start:end].
476 // The start index is inclusive and the end index is exclusive.
477 type span struct {
478 start int
479 end int
480 }
481 spans := make([]span, 0, 32)
482
483 // Find the field start and end indices.
484 // Doing this in a separate pass (rather than slicing the string s
485 // and collecting the result substrings right away) is significantly
486 // more efficient, possibly due to cache effects.
487 start := -1 // valid span start if >= 0
488 for i := 0; i < len(s); {
489 size := 1
490 r := rune(s[i])
491 if r >= utf8.RuneSelf {
492 r, size = utf8.DecodeRune(s[i:])
493 }
494 if f(r) {
495 if start >= 0 {
496 spans = append(spans, span{start, i})
497 start = -1
498 }
499 } else {
500 if start < 0 {
501 start = i
502 }
503 }
504 i += size
505 }
506
507 // Last field might end at EOF.
508 if start >= 0 {
509 spans = append(spans, span{start, len(s)})
510 }
511
512 // Create subslices from recorded field indices.
513 a := make([][]byte, len(spans))
514 for i, span := range spans {
515 a[i] = s[span.start:span.end:span.end]
516 }
517
518 return a
519}
520
521// Join concatenates the elements of s to create a new byte slice. The separator
522// sep is placed between elements in the resulting slice.
523func Join(s [][]byte, sep []byte) []byte {
524 if len(s) == 0 {
525 return []byte{}
526 }
527 if len(s) == 1 {
528 // Just return a copy.
529 return append([]byte(nil), s[0]...)
530 }
531 n := len(sep) * (len(s) - 1)
532 for _, v := range s {
533 n += len(v)
534 }
535
536 b := make([]byte, n)
537 bp := copy(b, s[0])
538 for _, v := range s[1:] {
539 bp += copy(b[bp:], sep)
540 bp += copy(b[bp:], v)
541 }
542 return b
543}
544
545// HasPrefix tests whether the byte slice s begins with prefix.
546func HasPrefix(s, prefix []byte) bool {
547 return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix)
548}
549
550// HasSuffix tests whether the byte slice s ends with suffix.
551func HasSuffix(s, suffix []byte) bool {
552 return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix)
553}
554
555// Map returns a copy of the byte slice s with all its characters modified
556// according to the mapping function. If mapping returns a negative value, the character is
557// dropped from the byte slice with no replacement. The characters in s and the
558// output are interpreted as UTF-8-encoded code points.
559func Map(mapping func(r rune) rune, s []byte) []byte {
560 // In the worst case, the slice can grow when mapped, making
561 // things unpleasant. But it's so rare we barge in assuming it's
562 // fine. It could also shrink but that falls out naturally.
563 maxbytes := len(s) // length of b
564 nbytes := 0 // number of bytes encoded in b
565 b := make([]byte, maxbytes)
566 for i := 0; i < len(s); {
567 wid := 1
568 r := rune(s[i])
569 if r >= utf8.RuneSelf {
570 r, wid = utf8.DecodeRune(s[i:])
571 }
572 r = mapping(r)
573 if r >= 0 {
574 rl := utf8.RuneLen(r)
575 if rl < 0 {
576 rl = len(string(utf8.RuneError))
577 }
578 if nbytes+rl > maxbytes {
579 // Grow the buffer.
580 maxbytes = maxbytes*2 + utf8.UTFMax
581 nb := make([]byte, maxbytes)
582 copy(nb, b[0:nbytes])
583 b = nb
584 }
585 nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r)
586 }
587 i += wid
588 }
589 return b[0:nbytes]
590}
591
592// Repeat returns a new byte slice consisting of count copies of b.
593//
594// It panics if count is negative or if
595// the result of (len(b) * count) overflows.
596func Repeat(b []byte, count int) []byte {
597 if count == 0 {
598 return []byte{}
599 }
600 // Since we cannot return an error on overflow,
601 // we should panic if the repeat will generate
602 // an overflow.
603 // See Issue golang.org/issue/16237.
604 if count < 0 {
605 panic("bytes: negative Repeat count")
606 } else if len(b)*count/count != len(b) {
607 panic("bytes: Repeat count causes overflow")
608 }
609
610 nb := make([]byte, len(b)*count)
611 bp := copy(nb, b)
612 for bp < len(nb) {
613 copy(nb[bp:], nb[:bp])
614 bp *= 2
615 }
616 return nb
617}
618
619// ToUpper returns a copy of the byte slice s with all Unicode letters mapped to
620// their upper case.
621func ToUpper(s []byte) []byte {
622 isASCII, hasLower := true, false
623 for i := 0; i < len(s); i++ {
624 c := s[i]
625 if c >= utf8.RuneSelf {
626 isASCII = false
627 break
628 }
629 hasLower = hasLower || ('a' <= c && c <= 'z')
630 }
631
632 if isASCII { // optimize for ASCII-only byte slices.
633 if !hasLower {
634 // Just return a copy.
635 return append([]byte(""), s...)
636 }
637 b := make([]byte, len(s))
638 for i := 0; i < len(s); i++ {
639 c := s[i]
640 if 'a' <= c && c <= 'z' {
641 c -= 'a' - 'A'
642 }
643 b[i] = c
644 }
645 return b
646 }
647 return Map(unicode.ToUpper, s)
648}
649
650// ToLower returns a copy of the byte slice s with all Unicode letters mapped to
651// their lower case.
652func ToLower(s []byte) []byte {
653 isASCII, hasUpper := true, false
654 for i := 0; i < len(s); i++ {
655 c := s[i]
656 if c >= utf8.RuneSelf {
657 isASCII = false
658 break
659 }
660 hasUpper = hasUpper || ('A' <= c && c <= 'Z')
661 }
662
663 if isASCII { // optimize for ASCII-only byte slices.
664 if !hasUpper {
665 return append([]byte(""), s...)
666 }
667 b := make([]byte, len(s))
668 for i := 0; i < len(s); i++ {
669 c := s[i]
670 if 'A' <= c && c <= 'Z' {
671 c += 'a' - 'A'
672 }
673 b[i] = c
674 }
675 return b
676 }
677 return Map(unicode.ToLower, s)
678}
679
680// ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case.
681func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) }
682
683// ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
684// upper case, giving priority to the special casing rules.
685func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte {
686 return Map(c.ToUpper, s)
687}
688
689// ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
690// lower case, giving priority to the special casing rules.
691func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte {
692 return Map(c.ToLower, s)
693}
694
695// ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
696// title case, giving priority to the special casing rules.
697func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte {
698 return Map(c.ToTitle, s)
699}
700
701// ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes
702// representing invalid UTF-8 replaced with the bytes in replacement, which may be empty.
703func ToValidUTF8(s, replacement []byte) []byte {
704 b := make([]byte, 0, len(s)+len(replacement))
705 invalid := false // previous byte was from an invalid UTF-8 sequence
706 for i := 0; i < len(s); {
707 c := s[i]
708 if c < utf8.RuneSelf {
709 i++
710 invalid = false
711 b = append(b, c)
712 continue
713 }
714 _, wid := utf8.DecodeRune(s[i:])
715 if wid == 1 {
716 i++
717 if !invalid {
718 invalid = true
719 b = append(b, replacement...)
720 }
721 continue
722 }
723 invalid = false
724 b = append(b, s[i:i+wid]...)
725 i += wid
726 }
727 return b
728}
729
730// isSeparator reports whether the rune could mark a word boundary.
731// TODO: update when package unicode captures more of the properties.
732func isSeparator(r rune) bool {
733 // ASCII alphanumerics and underscore are not separators
734 if r <= 0x7F {
735 switch {
736 case '0' <= r && r <= '9':
737 return false
738 case 'a' <= r && r <= 'z':
739 return false
740 case 'A' <= r && r <= 'Z':
741 return false
742 case r == '_':
743 return false
744 }
745 return true
746 }
747 // Letters and digits are not separators
748 if unicode.IsLetter(r) || unicode.IsDigit(r) {
749 return false
750 }
751 // Otherwise, all we can do for now is treat spaces as separators.
752 return unicode.IsSpace(r)
753}
754
755// Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin
756// words mapped to their title case.
757//
758// Deprecated: The rule Title uses for word boundaries does not handle Unicode
759// punctuation properly. Use golang.org/x/text/cases instead.
760func Title(s []byte) []byte {
761 // Use a closure here to remember state.
762 // Hackish but effective. Depends on Map scanning in order and calling
763 // the closure once per rune.
764 prev := ' '
765 return Map(
766 func(r rune) rune {
767 if isSeparator(prev) {
768 prev = r
769 return unicode.ToTitle(r)
770 }
771 prev = r
772 return r
773 },
774 s)
775}
776
777// TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off
778// all leading UTF-8-encoded code points c that satisfy f(c).
779func TrimLeftFunc(s []byte, f func(r rune) bool) []byte {
780 i := indexFunc(s, f, false)
781 if i == -1 {
782 return nil
783 }
784 return s[i:]
785}
786
787// TrimRightFunc returns a subslice of s by slicing off all trailing
788// UTF-8-encoded code points c that satisfy f(c).
789func TrimRightFunc(s []byte, f func(r rune) bool) []byte {
790 i := lastIndexFunc(s, f, false)
791 if i >= 0 && s[i] >= utf8.RuneSelf {
792 _, wid := utf8.DecodeRune(s[i:])
793 i += wid
794 } else {
795 i++
796 }
797 return s[0:i]
798}
799
800// TrimFunc returns a subslice of s by slicing off all leading and trailing
801// UTF-8-encoded code points c that satisfy f(c).
802func TrimFunc(s []byte, f func(r rune) bool) []byte {
803 return TrimRightFunc(TrimLeftFunc(s, f), f)
804}
805
806// TrimPrefix returns s without the provided leading prefix string.
807// If s doesn't start with prefix, s is returned unchanged.
808func TrimPrefix(s, prefix []byte) []byte {
809 if HasPrefix(s, prefix) {
810 return s[len(prefix):]
811 }
812 return s
813}
814
815// TrimSuffix returns s without the provided trailing suffix string.
816// If s doesn't end with suffix, s is returned unchanged.
817func TrimSuffix(s, suffix []byte) []byte {
818 if HasSuffix(s, suffix) {
819 return s[:len(s)-len(suffix)]
820 }
821 return s
822}
823
824// IndexFunc interprets s as a sequence of UTF-8-encoded code points.
825// It returns the byte index in s of the first Unicode
826// code point satisfying f(c), or -1 if none do.
827func IndexFunc(s []byte, f func(r rune) bool) int {
828 return indexFunc(s, f, true)
829}
830
831// LastIndexFunc interprets s as a sequence of UTF-8-encoded code points.
832// It returns the byte index in s of the last Unicode
833// code point satisfying f(c), or -1 if none do.
834func LastIndexFunc(s []byte, f func(r rune) bool) int {
835 return lastIndexFunc(s, f, true)
836}
837
838// indexFunc is the same as IndexFunc except that if
839// truth==false, the sense of the predicate function is
840// inverted.
841func indexFunc(s []byte, f func(r rune) bool, truth bool) int {
842 start := 0
843 for start < len(s) {
844 wid := 1
845 r := rune(s[start])
846 if r >= utf8.RuneSelf {
847 r, wid = utf8.DecodeRune(s[start:])
848 }
849 if f(r) == truth {
850 return start
851 }
852 start += wid
853 }
854 return -1
855}
856
857// lastIndexFunc is the same as LastIndexFunc except that if
858// truth==false, the sense of the predicate function is
859// inverted.
860func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int {
861 for i := len(s); i > 0; {
862 r, size := rune(s[i-1]), 1
863 if r >= utf8.RuneSelf {
864 r, size = utf8.DecodeLastRune(s[0:i])
865 }
866 i -= size
867 if f(r) == truth {
868 return i
869 }
870 }
871 return -1
872}
873
874// asciiSet is a 32-byte value, where each bit represents the presence of a
875// given ASCII character in the set. The 128-bits of the lower 16 bytes,
876// starting with the least-significant bit of the lowest word to the
877// most-significant bit of the highest word, map to the full range of all
878// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
879// ensuring that any non-ASCII character will be reported as not in the set.
880// This allocates a total of 32 bytes even though the upper half
881// is unused to avoid bounds checks in asciiSet.contains.
882type asciiSet [8]uint32
883
884// makeASCIISet creates a set of ASCII characters and reports whether all
885// characters in chars are ASCII.
886func makeASCIISet(chars string) (as asciiSet, ok bool) {
887 for i := 0; i < len(chars); i++ {
888 c := chars[i]
889 if c >= utf8.RuneSelf {
890 return as, false
891 }
892 as[c/32] |= 1 << (c % 32)
893 }
894 return as, true
895}
896
897// contains reports whether c is inside the set.
898func (as *asciiSet) contains(c byte) bool {
899 return (as[c/32] & (1 << (c % 32))) != 0
900}
901
902// containsRune is a simplified version of strings.ContainsRune
903// to avoid importing the strings package.
904// We avoid bytes.ContainsRune to avoid allocating a temporary copy of s.
905func containsRune(s string, r rune) bool {
906 for _, c := range s {
907 if c == r {
908 return true
909 }
910 }
911 return false
912}
913
914// Trim returns a subslice of s by slicing off all leading and
915// trailing UTF-8-encoded code points contained in cutset.
916func Trim(s []byte, cutset string) []byte {
917 if len(s) == 0 {
918 // This is what we've historically done.
919 return nil
920 }
921 if cutset == "" {
922 return s
923 }
924 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
925 return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0])
926 }
927 if as, ok := makeASCIISet(cutset); ok {
928 return trimLeftASCII(trimRightASCII(s, &as), &as)
929 }
930 return trimLeftUnicode(trimRightUnicode(s, cutset), cutset)
931}
932
933// TrimLeft returns a subslice of s by slicing off all leading
934// UTF-8-encoded code points contained in cutset.
935func TrimLeft(s []byte, cutset string) []byte {
936 if len(s) == 0 {
937 // This is what we've historically done.
938 return nil
939 }
940 if cutset == "" {
941 return s
942 }
943 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
944 return trimLeftByte(s, cutset[0])
945 }
946 if as, ok := makeASCIISet(cutset); ok {
947 return trimLeftASCII(s, &as)
948 }
949 return trimLeftUnicode(s, cutset)
950}
951
952func trimLeftByte(s []byte, c byte) []byte {
953 for len(s) > 0 && s[0] == c {
954 s = s[1:]
955 }
956 if len(s) == 0 {
957 // This is what we've historically done.
958 return nil
959 }
960 return s
961}
962
963func trimLeftASCII(s []byte, as *asciiSet) []byte {
964 for len(s) > 0 {
965 if !as.contains(s[0]) {
966 break
967 }
968 s = s[1:]
969 }
970 if len(s) == 0 {
971 // This is what we've historically done.
972 return nil
973 }
974 return s
975}
976
977func trimLeftUnicode(s []byte, cutset string) []byte {
978 for len(s) > 0 {
979 r, n := rune(s[0]), 1
980 if r >= utf8.RuneSelf {
981 r, n = utf8.DecodeRune(s)
982 }
983 if !containsRune(cutset, r) {
984 break
985 }
986 s = s[n:]
987 }
988 if len(s) == 0 {
989 // This is what we've historically done.
990 return nil
991 }
992 return s
993}
994
995// TrimRight returns a subslice of s by slicing off all trailing
996// UTF-8-encoded code points that are contained in cutset.
997func TrimRight(s []byte, cutset string) []byte {
998 if len(s) == 0 || cutset == "" {
999 return s
1000 }
1001 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
1002 return trimRightByte(s, cutset[0])
1003 }
1004 if as, ok := makeASCIISet(cutset); ok {
1005 return trimRightASCII(s, &as)
1006 }
1007 return trimRightUnicode(s, cutset)
1008}
1009
1010func trimRightByte(s []byte, c byte) []byte {
1011 for len(s) > 0 && s[len(s)-1] == c {
1012 s = s[:len(s)-1]
1013 }
1014 return s
1015}
1016
1017func trimRightASCII(s []byte, as *asciiSet) []byte {
1018 for len(s) > 0 {
1019 if !as.contains(s[len(s)-1]) {
1020 break
1021 }
1022 s = s[:len(s)-1]
1023 }
1024 return s
1025}
1026
1027func trimRightUnicode(s []byte, cutset string) []byte {
1028 for len(s) > 0 {
1029 r, n := rune(s[len(s)-1]), 1
1030 if r >= utf8.RuneSelf {
1031 r, n = utf8.DecodeLastRune(s)
1032 }
1033 if !containsRune(cutset, r) {
1034 break
1035 }
1036 s = s[:len(s)-n]
1037 }
1038 return s
1039}
1040
1041// TrimSpace returns a subslice of s by slicing off all leading and
1042// trailing white space, as defined by Unicode.
1043func TrimSpace(s []byte) []byte {
1044 // Fast path for ASCII: look for the first ASCII non-space byte
1045 start := 0
1046 for ; start < len(s); start++ {
1047 c := s[start]
1048 if c >= utf8.RuneSelf {
1049 // If we run into a non-ASCII byte, fall back to the
1050 // slower unicode-aware method on the remaining bytes
1051 return TrimFunc(s[start:], unicode.IsSpace)
1052 }
1053 if asciiSpace[c] == 0 {
1054 break
1055 }
1056 }
1057
1058 // Now look for the first ASCII non-space byte from the end
1059 stop := len(s)
1060 for ; stop > start; stop-- {
1061 c := s[stop-1]
1062 if c >= utf8.RuneSelf {
1063 return TrimFunc(s[start:stop], unicode.IsSpace)
1064 }
1065 if asciiSpace[c] == 0 {
1066 break
1067 }
1068 }
1069
1070 // At this point s[start:stop] starts and ends with an ASCII
1071 // non-space bytes, so we're done. Non-ASCII cases have already
1072 // been handled above.
1073 if start == stop {
1074 // Special case to preserve previous TrimLeftFunc behavior,
1075 // returning nil instead of empty slice if all spaces.
1076 return nil
1077 }
1078 return s[start:stop]
1079}
1080
1081// Runes interprets s as a sequence of UTF-8-encoded code points.
1082// It returns a slice of runes (Unicode code points) equivalent to s.
1083func Runes(s []byte) []rune {
1084 t := make([]rune, utf8.RuneCount(s))
1085 i := 0
1086 for len(s) > 0 {
1087 r, l := utf8.DecodeRune(s)
1088 t[i] = r
1089 i++
1090 s = s[l:]
1091 }
1092 return t
1093}
1094
1095// Replace returns a copy of the slice s with the first n
1096// non-overlapping instances of old replaced by new.
1097// If old is empty, it matches at the beginning of the slice
1098// and after each UTF-8 sequence, yielding up to k+1 replacements
1099// for a k-rune slice.
1100// If n < 0, there is no limit on the number of replacements.
1101func Replace(s, old, new []byte, n int) []byte {
1102 m := 0
1103 if n != 0 {
1104 // Compute number of replacements.
1105 m = Count(s, old)
1106 }
1107 if m == 0 {
1108 // Just return a copy.
1109 return append([]byte(nil), s...)
1110 }
1111 if n < 0 || m < n {
1112 n = m
1113 }
1114
1115 // Apply replacements to buffer.
1116 t := make([]byte, len(s)+n*(len(new)-len(old)))
1117 w := 0
1118 start := 0
1119 for i := 0; i < n; i++ {
1120 j := start
1121 if len(old) == 0 {
1122 if i > 0 {
1123 _, wid := utf8.DecodeRune(s[start:])
1124 j += wid
1125 }
1126 } else {
1127 j += Index(s[start:], old)
1128 }
1129 w += copy(t[w:], s[start:j])
1130 w += copy(t[w:], new)
1131 start = j + len(old)
1132 }
1133 w += copy(t[w:], s[start:])
1134 return t[0:w]
1135}
1136
1137// ReplaceAll returns a copy of the slice s with all
1138// non-overlapping instances of old replaced by new.
1139// If old is empty, it matches at the beginning of the slice
1140// and after each UTF-8 sequence, yielding up to k+1 replacements
1141// for a k-rune slice.
1142func ReplaceAll(s, old, new []byte) []byte {
1143 return Replace(s, old, new, -1)
1144}
1145
1146// EqualFold reports whether s and t, interpreted as UTF-8 strings,
1147// are equal under simple Unicode case-folding, which is a more general
1148// form of case-insensitivity.
1149func EqualFold(s, t []byte) bool {
1150 for len(s) != 0 && len(t) != 0 {
1151 // Extract first rune from each.
1152 var sr, tr rune
1153 if s[0] < utf8.RuneSelf {
1154 sr, s = rune(s[0]), s[1:]
1155 } else {
1156 r, size := utf8.DecodeRune(s)
1157 sr, s = r, s[size:]
1158 }
1159 if t[0] < utf8.RuneSelf {
1160 tr, t = rune(t[0]), t[1:]
1161 } else {
1162 r, size := utf8.DecodeRune(t)
1163 tr, t = r, t[size:]
1164 }
1165
1166 // If they match, keep going; if not, return false.
1167
1168 // Easy case.
1169 if tr == sr {
1170 continue
1171 }
1172
1173 // Make sr < tr to simplify what follows.
1174 if tr < sr {
1175 tr, sr = sr, tr
1176 }
1177 // Fast check for ASCII.
1178 if tr < utf8.RuneSelf {
1179 // ASCII only, sr/tr must be upper/lower case
1180 if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
1181 continue
1182 }
1183 return false
1184 }
1185
1186 // General case. SimpleFold(x) returns the next equivalent rune > x
1187 // or wraps around to smaller values.
1188 r := unicode.SimpleFold(sr)
1189 for r != sr && r < tr {
1190 r = unicode.SimpleFold(r)
1191 }
1192 if r == tr {
1193 continue
1194 }
1195 return false
1196 }
1197
1198 // One string is empty. Are both?
1199 return len(s) == len(t)
1200}
1201
1202// Index returns the index of the first instance of sep in s, or -1 if sep is not present in s.
1203func Index(s, sep []byte) int {
1204 n := len(sep)
1205 switch {
1206 case n == 0:
1207 return 0
1208 case n == 1:
1209 return IndexByte(s, sep[0])
1210 case n == len(s):
1211 if Equal(sep, s) {
1212 return 0
1213 }
1214 return -1
1215 case n > len(s):
1216 return -1
1217 case n <= bytealg.MaxLen:
1218 // Use brute force when s and sep both are small
1219 if len(s) <= bytealg.MaxBruteForce {
1220 return bytealg.Index(s, sep)
1221 }
1222 c0 := sep[0]
1223 c1 := sep[1]
1224 i := 0
1225 t := len(s) - n + 1
1226 fails := 0
1227 for i < t {
1228 if s[i] != c0 {
1229 // IndexByte is faster than bytealg.Index, so use it as long as
1230 // we're not getting lots of false positives.
1231 o := IndexByte(s[i+1:t], c0)
1232 if o < 0 {
1233 return -1
1234 }
1235 i += o + 1
1236 }
1237 if s[i+1] == c1 && Equal(s[i:i+n], sep) {
1238 return i
1239 }
1240 fails++
1241 i++
1242 // Switch to bytealg.Index when IndexByte produces too many false positives.
1243 if fails > bytealg.Cutover(i) {
1244 r := bytealg.Index(s[i:], sep)
1245 if r >= 0 {
1246 return r + i
1247 }
1248 return -1
1249 }
1250 }
1251 return -1
1252 }
1253 c0 := sep[0]
1254 c1 := sep[1]
1255 i := 0
1256 fails := 0
1257 t := len(s) - n + 1
1258 for i < t {
1259 if s[i] != c0 {
1260 o := IndexByte(s[i+1:t], c0)
1261 if o < 0 {
1262 break
1263 }
1264 i += o + 1
1265 }
1266 if s[i+1] == c1 && Equal(s[i:i+n], sep) {
1267 return i
1268 }
1269 i++
1270 fails++
1271 if fails >= 4+i>>4 && i < t {
1272 // Give up on IndexByte, it isn't skipping ahead
1273 // far enough to be better than Rabin-Karp.
1274 // Experiments (using IndexPeriodic) suggest
1275 // the cutover is about 16 byte skips.
1276 // TODO: if large prefixes of sep are matching
1277 // we should cutover at even larger average skips,
1278 // because Equal becomes that much more expensive.
1279 // This code does not take that effect into account.
1280 j := bytealg.IndexRabinKarpBytes(s[i:], sep)
1281 if j < 0 {
1282 return -1
1283 }
1284 return i + j
1285 }
1286 }
1287 return -1
1288}
1289
1290// Cut slices s around the first instance of sep,
1291// returning the text before and after sep.
1292// The found result reports whether sep appears in s.
1293// If sep does not appear in s, cut returns s, nil, false.
1294//
1295// Cut returns slices of the original slice s, not copies.
1296func Cut(s, sep []byte) (before, after []byte, found bool) {
1297 if i := Index(s, sep); i >= 0 {
1298 return s[:i], s[i+len(sep):], true
1299 }
1300 return s, nil, false
1301}